Characterizing Kernels of Operators Related to Thin Plate Magnetizations via Generalizations of Hodge Decompositions
نویسندگان
چکیده
Recently developed scanning magnetic microscopes measure the magnetic field in a plane above a thin-plate magnetization distribution. These instruments have broad applications in geoscience and materials science, but are limited by the requirement that the sample magnetization must be retrieved from measured field data, which is a generically nonunique inverse problem. This problem leads to an analysis of the kernel of the related magnetization operators, which also has relevance to the “equivalent source problem” in the case of measurements taken from just one side of the magnetization. We characterize the kernel of the operator relating planar magnetization distributions to planar magnetic field maps in various function and distribution spaces (e.g., sums of derivatives of L (Lebesgue spaces) or bounded mean oscillation (BMO) functions). For this purpose, we present a generalization of the Hodge decomposition in terms of Riesz transforms and utilize it to characterize sources that do not produce magnetic field either above or below the sample, or that are magnetically silent (i.e., no magnetic field anywhere outside the sample). For example, we show that a thin-plate magnetization is silent (i.e., in the kernel) when its normal component is zero and its tangential component is divergence-free. In addition, we show that compactly supported magnetizations (i.e., magnetizations that are zero outside of a bounded set in the source plane) that do not produce magnetic fields either above or below the sample are necessarily silent. In particular, neither a nontrivial planar magnetization with fixed direction (unidimensional) compact support nor a bidimensional planar magnetization (i.e., a sum of two unidimensional magnetizations) that is nontangential can be silent. We prove that any planar magnetization distribution is equivalent to a unidimensional one. We also discuss the advantages of mapping the field on both sides of a magnetization, whenever experimentally feasible. Examples of source recovery are given along with a brief discussion of the Fourier-based inversion techniques that are utilized. 2000 Mathematics Subject Classification. Primary: 15A29, Secondary: 76W05, 78A30.
منابع مشابه
Some generalizations of Darbo's theorem for solving a systems of functional-integral equations via measure of noncompactness
In this paper, using the concept of measure of noncompactness, which is a very useful and powerful tools in nonlinear functional analysis, metric fixed point theory and integral equations, we introduce a new contraction on a Banach space. For this purpose by using of a measure of noncompactness on a finite product space, we obtain some generalizations of Darbo’s fixed-point theorem. Then, with ...
متن کاملA new characterization for Meir-Keeler condensing operators and its applications
Darbo's fixed point theorem and its generalizations play a crucial role in the existence of solutions in integral equations. Meir-Keeler condensing operators is a generalization of Darbo's fixed point theorem and most of other generalizations are a special case of this result. In recent years, some authors applied these generalizations to solve several special integral equations and some of the...
متن کاملEssential norm estimates of generalized weighted composition operators into weighted type spaces
Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...
متن کاملOrdered Weighted Averaging Operators and their Generalizations with Applications in Decision Making
The definition of ordered weighted averaging (OWA) operators and their applications in decision making are reviewed. Also, some generalizations of OWA operators are studied and then, the notion of 2-symmetric OWA operators is introduced. These generalizations are illustrated by some examples.
متن کاملThermal Stability of Thin Rectangular Plates with Variable Thickness Made of Functionally Graded Materials
In this research, thermal buckling of thin rectangular plate made of Functionally Graded Materials (FGMs) with linear varying thickness is considered. Material properties are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The supporting condition of all edges of such a plate is simply supported. ...
متن کامل